![[Paper Review] Pi0, Pi0.5, Pi0-FAST - Tracing the Path of Physical Intelligence (PI)](/_next/image?url=https%3A%2F%2Fwww.notion.so%2Fimage%2Fattachment%253A294a2837-23c7-45fe-be7f-d02ac3502509%253Aimage.png%3Ftable%3Dblock%26id%3D2439b104-9db2-8061-b3a5-f1b0154412fe%26cache%3Dv2&w=3840&q=75)
[Paper Review] Pi0, Pi0.5, Pi0-FAST - Tracing the Path of Physical Intelligence (PI)
What is Physical Intelligence (PI)? Physical Intelligence is a robotics and AI startup founded in 2024 by Chelsea Finn (Stanford Professor), Sergey Levine, Karol Hausman, Brian Ichter, and Lachy Groom. Headquartered in San Francisco, the company focuses on building general-purpose embodied AI by combining machine learning with real-world interaction, leveraging advances in reinforcement learning, control, and computer vision.
![[Blog] Itโs Been a While โ Hereโs What Iโve Been Up To](/_next/image?url=https%3A%2F%2Fwww.notion.so%2Fimage%2Fattachment%253A3da53626-5887-40f0-bef6-99f807cfdb82%253AScreenshot_2025-03-27_at_10.39.55_AM.png%3Ftable%3Dblock%26id%3D1c39b104-9db2-8025-afe4-d782541781dc%26cache%3Dv2&w=3840&q=75)
![[Paper Review] OpenVLA: An Open-Source Vision-Language-Action Model](/_next/image?url=https%3A%2F%2Fwww.notion.so%2Fimage%2Fhttps%253A%252F%252Fprod-files-secure.s3.us-west-2.amazonaws.com%252Fde7e8c2a-d8d4-488e-8f26-549d4037a363%252Fe03024b2-c957-4aed-a090-396a1d381282%252FUntitled_(5).png%3Ftable%3Dblock%26id%3D1289b104-9db2-80eb-8479-f53d78d356e6%26cache%3Dv2&w=3840&q=75)
![[Paper Review] Mobility VLA: Multimodal Instruction Navigation with Long-Context VLMs and Topological Graphs](/_next/image?url=https%3A%2F%2Fwww.notion.so%2Fimage%2Fhttps%253A%252F%252Fprod-files-secure.s3.us-west-2.amazonaws.com%252Fde7e8c2a-d8d4-488e-8f26-549d4037a363%252Fd57228e6-db19-4563-9709-c2323fb1716f%252FUntitled_(3).png%3Ftable%3Dblock%26id%3D1289b104-9db2-8051-85a4-ea6e301e66d3%26cache%3Dv2&w=3840&q=75)
.png%3Ftable%3Dblock%26id%3D1289b104-9db2-8004-9ae2-d8b020323818%26cache%3Dv2&w=3840&q=75)

![[๋
ผ๋ฌธ๋ฆฌ๋ทฐ] Driving Everywhere with Large Language Model Policy Adaptation](/_next/image?url=https%3A%2F%2Fwww.notion.so%2Fimage%2Fhttps%253A%252F%252Fprod-files-secure.s3.us-west-2.amazonaws.com%252Fde7e8c2a-d8d4-488e-8f26-549d4037a363%252Ff97413d5-0526-48ec-b314-cba401f2af4c%252FUntitled_(2).png%3Ftable%3Dblock%26id%3D1289b104-9db2-8012-81e0-ec7999fd858a%26cache%3Dv2&w=3840&q=75)
![(3) [Paper Review] Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning: Embodied AI](/_next/image?url=https%3A%2F%2Fwww.notion.so%2Fimage%2Fhttps%253A%252F%252Fprod-files-secure.s3.us-west-2.amazonaws.com%252Fde7e8c2a-d8d4-488e-8f26-549d4037a363%252F8ceeba0d-8b6c-45f9-a296-4aeadeae0566%252FUntitled.png%3Ftable%3Dblock%26id%3D9b9b3122-31fc-405d-860d-5fea0f2c5dbd%26cache%3Dv2&w=3840&q=75)
![[๋
ผ๋ฌธ๋ฆฌ๋ทฐ] Scaling Instructable Agents Across Many Simulated Worlds](/_next/image?url=https%3A%2F%2Fwww.notion.so%2Fimage%2Fhttps%253A%252F%252Fprod-files-secure.s3.us-west-2.amazonaws.com%252Fde7e8c2a-d8d4-488e-8f26-549d4037a363%252Fdd673178-754b-477e-85c3-510c9e0304f4%252FUntitled_(4).png%3Ftable%3Dblock%26id%3D1289b104-9db2-805b-8450-f609dec0de7a%26cache%3Dv2&w=3840&q=75)

![(2) [๋
ผ๋ฌธ๋ฆฌ๋ทฐ] RT-2, Vision-Language-Action Models Transfer Web Knowlege to Robotic Control: Embodied AI](/_next/image?url=https%3A%2F%2Fwww.notion.so%2Fimage%2Fhttps%253A%252F%252Fprod-files-secure.s3.us-west-2.amazonaws.com%252Fde7e8c2a-d8d4-488e-8f26-549d4037a363%252F02cff65f-d206-4eba-8d76-c314778405e8%252FUntitled.png%3Ftable%3Dblock%26id%3D5049813d-bd9f-486b-9774-c8634f779a2b%26cache%3Dv2&w=3840&q=75)
![(2) [๋
ผ๋ฌธ๋ฆฌ๋ทฐ] Zero123: 3D Generation](/_next/image?url=https%3A%2F%2Fwww.notion.so%2Fimage%2Fhttps%253A%252F%252Fprod-files-secure.s3.us-west-2.amazonaws.com%252Fde7e8c2a-d8d4-488e-8f26-549d4037a363%252F7868d637-7741-4f1e-b7c1-9860b6bf19a9%252FUntitled.png%3Ftable%3Dblock%26id%3Db14c1168-59a5-4fd8-b5fe-7be4785b502d%26cache%3Dv2&w=3840&q=75)
![(1) [๋
ผ๋ฌธ๋ฆฌ๋ทฐ] Q-transformer : Embodied AI](/_next/image?url=https%3A%2F%2Fwww.notion.so%2Fimage%2Fhttps%253A%252F%252Fprod-files-secure.s3.us-west-2.amazonaws.com%252Fde7e8c2a-d8d4-488e-8f26-549d4037a363%252Fc1c7cd24-b59b-4673-9dab-d7555dc32598%252FUntitled.png%3Ftable%3Dblock%26id%3D5414683b-2ac8-4e64-9861-0a325b133567%26cache%3Dv2&w=3840&q=75)



![(4) ๊ฐํํ์ต ๊ฒ์ ์์ฉํ - [๋ชจ๋์ ์ฐ๊ตฌ์] ์ค์ํ ๊ฒ์ ๊บพ์ด์ง ์๋ RL ํ๊ธฐ](/_next/image?url=https%3A%2F%2Fwww.notion.so%2Fimage%2Fhttps%253A%252F%252Fprod-files-secure.s3.us-west-2.amazonaws.com%252Fde7e8c2a-d8d4-488e-8f26-549d4037a363%252F7d6a375d-7108-4fb3-87bf-1daa46cdbc81%252F%2525EC%25258A%2525A4%2525ED%252581%2525AC%2525EB%2525A6%2525B0%2525EC%252583%2525B7_2024-02-27_231050.png%3Ftable%3Dblock%26id%3D0e2d5da6-cec0-4c04-a33a-4a9d3402a0cd%26cache%3Dv2&w=3840&q=75)
.png%3Ftable%3Dblock%26id%3D296914a6-c2aa-49a7-93b2-87a195f322ff%26cache%3Dv2&w=3840&q=75)
![(3) Pretraining for inteligent robot - [๋ชจ๋์ ์ฐ๊ตฌ์] ์ค์ํ ๊ฒ์ ๊บพ์ด์ง ์๋ RL ํ๊ธฐ](/_next/image?url=https%3A%2F%2Fwww.notion.so%2Fimage%2Fhttps%253A%252F%252Fprod-files-secure.s3.us-west-2.amazonaws.com%252Fde7e8c2a-d8d4-488e-8f26-549d4037a363%252F190508d1-3bfb-4770-a76b-bf01b3856f2e%252Funnamed.webp%3Ftable%3Dblock%26id%3Da2076157-d74f-4073-afc7-896382563e7e%26cache%3Dv2&w=3840&q=75)
![(2) Causal RL, Multi environment RL - [๋ชจ๋์ ์ฐ๊ตฌ์] ์ค์ํ ๊ฒ์ ๊บพ์ด์ง ์๋ RL ํ๊ธฐ](/_next/image?url=https%3A%2F%2Fwww.notion.so%2Fimage%2Fhttps%253A%252F%252Fprod-files-secure.s3.us-west-2.amazonaws.com%252Fde7e8c2a-d8d4-488e-8f26-549d4037a363%252Fa75a3cf5-d236-4e7f-99f7-f5cc3deb1abc%252Fff13-19.png%3Ftable%3Dblock%26id%3D246388c9-0d45-4f00-9f08-6e80b2ce0ceb%26cache%3Dv2&w=3840&q=75)
![(1) 2023 Reinforcement Learning Trend - [๋ชจ๋์ ์ฐ๊ตฌ์] ์ค์ํ ๊ฒ์ ๊บพ์ด์ง ์๋ RL ํ๊ธฐ](/_next/image?url=https%3A%2F%2Fwww.notion.so%2Fimage%2Fhttps%253A%252F%252Fprod-files-secure.s3.us-west-2.amazonaws.com%252Fde7e8c2a-d8d4-488e-8f26-549d4037a363%252F3420c0a5-6e65-443f-8961-5a6b2d8adf24%252F400331474_6956017711125153_5509337466998315324_n.jpg%3Ftable%3Dblock%26id%3D86e8a2c5-444c-4954-a161-2ba08bb1cc1b%26cache%3Dv2&w=3840&q=75)